110k views
3 votes
the value of tan(alpha+beta) given cos(alpha+beta)= -528/697 and sin(alpha+beta)= 455/697 and sin(a)=40/41 and sin(b)=15/17

User Fijal
by
4.3k points

1 Answer

4 votes

PROBLEM STATEMENT

To evaluate the value of


\tan (\alpha+\beta)

GIVEN


\begin{gathered} \cos (\alpha+\beta)=-(528)/(697) \\ \sin (\alpha+\beta)=(455)/(697) \\ \sin (\alpha)=(40)/(41) \\ \sin (\beta)=(15)/(17) \end{gathered}

SOLUTION

Recall the trigonometric identity:


\tan (x)=(\sin (x))/(\cos (x))

If we have


x=\alpha+\beta

Therefore, we have that:


\tan (\alpha+\beta)=(\sin(\alpha+\beta))/(\cos(\alpha+\beta))

Substituting for the values of sin and cos, we have:


\tan (\alpha+\beta)=((455)/(697))/(-(528)/(697))

Rewriting, we have:


\begin{gathered} \tan (\alpha+\beta)=-(455)/(697)/(528)/(697) \\ \tan (\alpha+\beta)=-(455)/(697)*(697)/(528) \\ \tan (\alpha+\beta)=-(455)/(528) \end{gathered}

ANSWER


\tan (\alpha+\beta)=-(455)/(528)

User Jakub Kozera
by
4.0k points