Polar coordinates are generally written as :
![(r,\theta)](https://img.qammunity.org/2023/formulas/mathematics/high-school/js44i15nht2a8iofbwuom8669hh33vizoz.png)
And the rectangular coordinate equivalent (x,y) is obtained using the following relationships:
![\begin{gathered} x=\text{ r}*\cos \theta \\ y=r*\sin \theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rwq2sj5mg5q1u4ge4e7cb3gkv151jf179d.png)
Now, since the given polar coordinate is:
![\begin{gathered} (r,\theta) \\ \Longrightarrow\text{ (6, }(3\pi)/(2)\text{)} \\ r=\text{ 6,} \\ \theta=(3\pi)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w0yk4s315445wrn57yjopthq2chsk9q9em.png)
Therefore, the corresponding rectangular coordinate is :
![\begin{gathered} x=\text{ r}*\cos \theta \\ y=\text{ r}*\sin \theta \\ =>x=6*\cos ((3\pi)/(2))\text{ (note: }(3\pi)/(2)radians=270^o\text{)} \\ x=\text{ 6 }* cos270^o=6\text{ }*0\text{ = 0} \\ x=\text{ 0} \\ \Rightarrow y=6*\sin ((3\pi)/(2)) \\ y=\text{ 6}*\sin 270^o \\ y=\text{ 6}*(-1)\text{ = -6} \\ y=\text{ -6} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/duupsszuy9glaxeir45uf62onw7mglmrv8.png)
Therefore, the rectangular coordinate equivalent (x,y) is (0,-6)