Solution:
Given:
![f(x)=x^4-2x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/jr0232cyp8zt6jj6ab22etnmso5enswy49.png)
To get the local maximum and minimum point, we differentiate the function twice.
![\begin{gathered} f^(\prime)(x)=4x^3-4x \\ \\ To\text{ get the critical points, f'(x)=0} \\ 4x^3-4x=0 \\ \text{Factorizing,} \\ 4x(x^2-1)=0 \\ \text{Thus,} \\ (4x)(x-1)(x+1)=0 \\ \text{Hence, the critical points are;} \\ x=0,x=1,x=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/j42hihfxtnt8xiltj7wnr0fkide9var2bw.png)
To get the maximum and minimum points, we differentiate further,
![\begin{gathered} f^(\prime)(x)=4x^3-4x \\ f^(\doubleprime)(x)=12x^2-4 \\ \\ \text{Inputting the critical points into f''(x),} \\ \text{when x = -1,} \\ f^(\doubleprime)(-1)=12(-1)^2-4=12-4=8 \\ S\text{ ince f''(x)>0, then this is a minimum point.} \\ x=-1\text{ is a minimum} \\ \\ \\ \text{when x = 1,} \\ f^(\doubleprime)(1)=12(1^2)-4=12-4=8 \\ S\text{ ince f''(x)>0, then this is a minimum point.} \\ x=1\text{ is a minimum} \\ \\ \text{when x = 0,} \\ f^(\doubleprime)(0)=12(0^2)-4=0-4=-4 \\ S\text{ ince f''(x)<0, then this is a maximum point.} \\ x=0\text{ is a maximum} \end{gathered}]()
Thus,
![\begin{gathered} At\text{ x = 0,} \\ f(x)=x^4-2x^2 \\ f(0)=0^4-2(0^2)=0-0=0 \\ \\ \text{Hence, (0,0) is a local maximum} \\ \\ \\ At\text{ x = -1,} \\ f(x)=x^4-2x^2 \\ f(-1)=(-1)^4-2(-1)^2=1-2=-1 \\ \\ \text{Hence, (-1,-1) is a local minimum} \\ \\ \\ At\text{ x = 1,} \\ f(x)=x^4-2x^2 \\ f(1)=1^4-2(1^2) \\ f(1)=1-2=-1 \\ \\ \text{Hence, (1,-1) is a local minimum} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/j4mnlesalvczg6b8rbilaxc6zyjtoud98p.png)
The graph is as shown below;
Therefore,
The local minimum occurs at (-1,-1) and (1,-1)
The local maximum occurs at (0,0)