the general form of the line is
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
where m is the slope of the line and b the y-intercept
we get the slope from the statement m=-6
![y=-6x+b](https://img.qammunity.org/2023/formulas/mathematics/college/twvt624crzm8313m4utb0v6fil7w6vfsom.png)
now to find the value of b we replace the point (-2,4) and solve for b
![\begin{gathered} (4)=-6(-2)+b \\ 4=12+b \\ b=4-12 \\ b=-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iqe82qa9nhxf1vxb0mt37kjbpa5gscbw1w.png)
now replace the value of b
![y=-6x-8](https://img.qammunity.org/2023/formulas/mathematics/college/1ypceklh9ooylaobihhsaosip2zb2zqk22.png)
and transform to the standard form placing the unknows on the same side
![y+6x=-8](https://img.qammunity.org/2023/formulas/mathematics/college/t41dj9m55h7wd5gerwh1wqjirwjot9f670.png)
we can reorganize
![6x+y=-8](https://img.qammunity.org/2023/formulas/mathematics/college/gyze4c3c99er131f6z5npnswr4rafjhxzr.png)
then right option is Third option