The first given inequality is
![5n+3\ge7(n-3)](https://img.qammunity.org/2023/formulas/mathematics/college/4bk0ojs89krokaokk22jwx6sow5dqcfmbi.png)
First, we use the distributive property
![5n+3\ge7n-21](https://img.qammunity.org/2023/formulas/mathematics/college/kkg5w4efag154yinaceuqbfurpnw0eailf.png)
Second, we subtract 7n on each side
![\begin{gathered} 5n+3-7n\ge7n-21-7n \\ -2n+3\ge-21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pmodset6dlnwz1xgjhvgxu1jqnwtb4ff93.png)
Third, we subtract 3 on each side
![\begin{gathered} -2n+3-3\ge-21-3 \\ -2n\ge-24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5ho0wu340elmmdrhrgk5wmwd7bv62jo052.png)
At last, we divide the inequality by -2, which changes the inequality sign
![\begin{gathered} (-2n)/(-2)\leq(-24)/(-2) \\ n\leq12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z8ojzb517332hbfseh4oi495nff4osbtg2.png)
Therefore, the solution is all real numbers less than or equal to 12.
We repeat the process for the other inequalities.
![\begin{gathered} 6-2p\ge-3 \\ 6-2p-6\ge-3-6 \\ -2p\ge-9 \\ (-2p)/(-2)\leq(-9)/(-2) \\ p\leq(9)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s5d7vzrw2p25o296waa7j1jsmuty8pf2me.png)
The solution is all real numbers less than or equal to 9/2.
The last inequality would be
![\begin{gathered} 3(y-4)<5(y+2) \\ 3y-12<5y+10 \\ 3y-12-5y<5y+10-5y \\ -2y-12<10 \\ -2y-12+12<10+12 \\ -2y<22 \\ (-2y)/(-2)>(22)/(-2) \\ y>-11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1we7nre4sx8vjx3xj7yfo3txmt6r1zx18x.png)
The solution is all real numbers greater than -11.