26.2k views
4 votes
Hello! I need some assistance with this homework question, pleaseQ10

Hello! I need some assistance with this homework question, pleaseQ10-example-1
User Shinigamae
by
8.5k points

1 Answer

5 votes

We can do the following steps to find the quotient difference for the given function.

Step 1: We find f(x + h). For this, we replace x = x + h into the given function.


\begin{gathered} f(x)=\sqrt[]{x-16} \\ f(x+h)=\sqrt[]{x+h-16} \end{gathered}

Step 2: We apply the quotient difference formula.


(f(x+h)-f(x))/(h)=\frac{\sqrt[]{x+h-16}-\sqrt[]{x-16}}{h}

Step 3: We rationalize the numerator. For this, we multiply by the conjugate of the numerator.


\begin{gathered} \text{ Multiply by }\sqrt[]{x+h-16}+\sqrt[]{x-16}\text{ on the numerator and the denominator} \\ (f(x+h)-f(x))/(h)=\frac{\sqrt[]{x+h-16}-\sqrt[]{x-16}}{h}\cdot\frac{\sqrt[]{x+h-16}+\sqrt[]{x-16}\text{ }}{\sqrt[]{x+h-16}+\sqrt[]{x-16}\text{ }} \\ (f(x+h)-f(x))/(h)=\frac{(\sqrt[]{x+h-16}-\sqrt[]{x-16})(\sqrt[]{x+h-16}+\sqrt[]{x-16}\text{ })}{h(\sqrt[]{x+h-16}+\sqrt[]{x-16}\text{ })} \end{gathered}

Step 4: We simplify as much as we can. For this, we factor the numerator using the difference of squares formula.


(a+b)(a-b)=a^2-b^2\Rightarrow\text{ Difference of squares }

Then, we have:


\begin{gathered} a=\sqrt[]{x+h-16} \\ b=\sqrt[]{x-16} \\ (f(x+h)-f(x))/(h)=\frac{(\sqrt[]{x+h-16})^2-(\sqrt[]{x-16})^2}{h(\sqrt[]{x+h-16}+\sqrt[]{x-16}\text{ })} \\ (f(x+h)-f(x))/(h)=\frac{x+h-16-(x-16)^{}}{h(\sqrt[]{x+h-16}+\sqrt[]{x-16}\text{ })} \\ (f(x+h)-f(x))/(h)=\frac{x+h-16-x+16^{}}{h(\sqrt[]{x+h-16}+\sqrt[]{x-16}\text{ })} \\ (f(x+h)-f(x))/(h)=\frac{h^{}}{h(\sqrt[]{x+h-16}+\sqrt[]{x-16}\text{ })} \\ (f(x+h)-f(x))/(h)=\frac{1^{}}{\sqrt[]{x+h-16}+\sqrt[]{x-16}} \end{gathered}

Therefore, the difference quotient of the function is:


\frac{1^{}}{\sqrt[]{x+h-16}+\sqrt[]{x-16}}

User Al Sweigart
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories