ANSWER
![\begin{gathered} r=0.0872 \\ r=8.72\% \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x85e12rba1vmgldyb3h7k65lgsb5sqbjle.png)
Step-by-step explanation
We want to find the rate at which the amount was continuously compounded.
The formula for the total amount for a continuously compounded principal is:
![A=Pe^(rt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/5drqeoscjn6fncl992j2z04p3erm9eojdf.png)
where A = amount
P = principal
r = rate
t = time (in years)
Substituting the given values into the equation:
![\begin{gathered} 10740.65=4900\cdot e^(r\cdot9) \\ 10740.65=4900\cdot e^(9r) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n2dp2xqclocxtyph7ej7j8eur8l5ibwjsd.png)
Divide both sides by 4900:
![\begin{gathered} (10740.65)/(4900)=e^(9r) \\ e^(9r)=2.1920 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zga8yzg3lzetqwnub3dwzmr6zbiirruc3q.png)
Find the natural logarithm of both sides of the equation:
![\begin{gathered} \ln (e^(9r))=\ln 2.1920 \\ 9r=0.7848 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/49x5fsjychv3vju4hb62ayxj67af387fik.png)
Divide both sides by 9:
![\begin{gathered} r=(0.7848)/(9) \\ r=0.0872 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pwtcp6jdhp3hebn2gsel01ul5o65obggv4.png)
Convert to decimal number:
![\begin{gathered} r=0.0872\cdot100 \\ r=8.72\% \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ujs8k4zpukyorg17wc6ar8xk60qy0si3lq.png)
That is the interest rate.