Let x be the liters need of the 25% acid solution, and y be the 70% acid solution, then we can set the following system of equations:
![\begin{gathered} x+y=90, \\ 0.25x+0.70y=0.40(90)=36. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/epx2dimydqe6hkcwaiwgczm9gmfj80h4ac.png)
Solving the first equation for x, we get:
![x=90-y\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/e5d2qe95jox52pllw5viajirr5stvwvrxe.png)
Substituting the above equation in the second equation we get:
![0.25(90-y)+0.70y=36.](https://img.qammunity.org/2023/formulas/mathematics/college/8xy5ngokj953nu799oll6ijg1r3frgd9d6.png)
Simplifying and adding like terms we get:
![\begin{gathered} 22.5-0.25y+0.70y=36, \\ 0.45y+22.5=36. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/67432smb7stx7qiwrdg4arnqu7lm7n4zgw.png)
Adding 22.5 and then dividing by 0.45 we get:
![\begin{gathered} 0.45y=13.5, \\ y=30. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oltgvskij3t5qy054wgfteoe67a7k06z0r.png)
Substituting y=30 in x=90-y, we get:
![x=90-30=60.](https://img.qammunity.org/2023/formulas/mathematics/college/andyeogckir7uggkkw4cs8fq7zv8wf8kpn.png)
Therefore, x=60 liters, and y=30 liters.
Answer: 60 liters of the 25% acid solution are needed and 30 liters are needed of the 70% acid solution.