we have the functions
![\begin{gathered} f(x)=x^2 \\ g(x)=x^2+8x+16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nzv8o0ih42jsk4xifda92clrm4g07b0cat.png)
The vertex of function f(x) is the origin (0,0)
so
Find out the vertex of the function g(x)
Convert to vertex form
Complete the square
![\begin{gathered} g(x)=(x^2+8x)+16 \\ g(x)=(x^2+8x+4^2)+16-4^2 \\ g(x)=(x+4)^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xrpovu1ws4mjqwe7m44lsnluf21271fv56.png)
The vertex of the function g(x) is (-4,0)
therefore
The rule of the translation is given by
(x,y) -------> (x-4,y)
the translation should be 4 units to the left