This is a permutation problem.
The expression n permutation r is expressed as:
![^nP_r=(n!)/((n-r)!)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gdpdqcyk4odbluf8cnit8vgom9giz385zb.png)
In like manner, n permutation 4 will be:
![\begin{gathered} P(n,4)=17160 \\ (n!)/((n-4)!)=17160 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4qgo08i0vctbbhp0yzfwkybgyk22k8eymf.png)
Evaluation the permutation operation above, we have:
![\begin{gathered} (n!)/((n-4)!)=17160 \\ (n(n-1)(n-2)(n-3)(n-4)!)/((n-4)!)=17160 \\ (n-4)!\text{ cancels out (n-4)!, thus we have;} \\ n(n-1)(n-2)(n-3)=17160 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i4twyf7z2ul2m3a89qazy7fuk3ik51xilx.png)
Expanding the Left hand side of the equation; we have:
![\begin{gathered} n^4-6n^3+11n^2-6n=17160 \\ n^4-6n^3+11n^2-6n-17160=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/imgulme3fl9cry48txaf40atz7wario2pz.png)
By factorization, the equation becomes;
![\begin{gathered} \mleft(n+10\mright)\mleft(n-13\mright)\mleft(n^2-3n+132\mright)=0 \\ (n^2-3n+132)\text{ is not factorizable and would also produce unreal roots, thus the value of n from the expression can't be correct} \\ n+10=0\text{ will produce n=-10, we can have a negative result for permutation problems} \\ \text{Thus, the correct answer is;} \\ n-13=0 \\ n=13 \end{gathered}]()
Hence, the value of n is 13, option C