Step-by-step explanation:
We were given the function:
![t\left(x\right)=4cos\left(\left((\pi)/(12)\right)x\right)+8](https://img.qammunity.org/2023/formulas/mathematics/college/a6kclvzyq8w7od2n60nxdy3jjjordd76tz.png)
Graphically:
We are to determine its horizontal shift & its stretch/shrink. This is shown below:
Horizontal Shift:
![\begin{gathered} \text{From the general form of the sinusoidal function, we have:} \\ y=A\cos[B(x-C)]+D \\ where: \\ A=amplitude \\ (2\pi)/(B)=period \\ C=Phase(horizontal)\text{ }shift \\ D=Vertical\text{ }shift \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hd8rx3k00t6l2aat36qbrepxhd2g85u1l8.png)
Comparing the general form with the function given unto us, we have:
![C=0](https://img.qammunity.org/2023/formulas/mathematics/college/hjlz700j0p9vu4pvuk15g9b7bt42o8qk9k.png)
There is no horizontal shift
Horizontal stretch/shrink:
If we have: