Answer:
(a)R'(5,5), S'(9.2) and T'(4,2)
(b)5 units.
Step-by-step explanation:
The indicated vector shows a translation of 4 units down and 3 units right.
From the graph, the vertices of triangle RST are:
R(2,9), S(6, 6) and T(1,6)
(a)The coordinates of the vertices of the image will then be:
![\begin{gathered} R^(\prime)=(2+3,9-4)=(5,5) \\ S^(\prime)=(6+3,6-4)=(9,2) \\ T^(\prime)=(1+3,6-4)=(4,2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hfrhyc5l4wcyvcafeqbf0oyst8e47qjtho.png)
(b)If R and R' are connected with a straight line
The length of the line segment RR' will be the distance between R(2,9) and R'(5,5).
Using the distance formula, we have:
![\begin{gathered} Distance=√((x_2-x_1)^2+(y_2-y_1)^2) \\ =\sqrt[]{(2-5)^2+(9-5)^2} \\ =\sqrt[]{(-3)^2+(4)^2} \\ =\sqrt[]{25} \\ =5\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o1ndq9vjk4034hoc8aps9bxu3s6gx0ie8b.png)
The line segment RR' would measure 5 units.