Let θ be the angle from the normal to the surface to the ray of light inside the block after the first refraction:
Let n_1 be the index of refraction that corresponds to the medium of the angle θ_1. According to Snell's Law:

Since the angles θ_1 and θ_2 correspond to the air, then n_1=1 and n_2=1, Then:

Since sin(90-θ)=cos(θ), then:

Isolate sin(θ) and cos(θ) from their corresponding equations:

Recall the Pythagorean Identity:

Replace the expressions for sin(θ) and cos(θ):
![\begin{gathered} ((\sin (\theta_1))/(n))^2+((\sin (\theta_2))/(n))^2=1 \\ \Rightarrow(\sin^2(\theta_1))/(n^2)+(\sin ^2(\theta_2))/(n^2)=1 \\ \Rightarrow\sin ^2(\theta_1)+\sin ^2(\theta_2)=n^2 \\ \Rightarrow\sqrt[]{\sin ^2(\theta_1)+\sin ^2(\theta_2)}=n \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/kwmhjo90ulcygclugwv0l7fhv9zn5ignbf.png)
Therefore, the index of refraction is given by:
![n=\sqrt[]{\sin^2(\theta_1)+\sin^2(\theta_2)}](https://img.qammunity.org/2023/formulas/physics/college/n91pnoyr54zglxuyt744yor9ze8vcaykdl.png)
Substitute θ_1=54° and θ_2=67° to find the index of refraction of the material:
![\begin{gathered} n=\sqrt[]{\sin^2(54)+\sin^2(67)} \\ =1.22549\ldots \\ \approx1.23 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/bhj0dtazojzh5z52m5hfgnx6eeipkcgnld.png)
From the diagram, notice that:

On the other hand:

Substitute the expressions for sin(θ) and cos(θ):

Substitute the expression for tan(θ) into the formula to find X:

Substitute L=75cm, θ_1=54° and θ_2=67° to find the value of X:
![\begin{gathered} X=(\sin(67))/(\sin(54))*75\operatorname{cm} \\ =85.3355\ldots cm \end{gathered}]()
Therefore, the answers are:
![\begin{gathered} n=1.23 \\ X=85\operatorname{cm} \end{gathered}]()