Given:
The explicit rule for a sequence is given as:
![f(x)=1.25n+6.25](https://img.qammunity.org/2023/formulas/mathematics/college/cgi82ttnjxub60rgmp8qxbh1vhnh4oxu54.png)
The given specific term is 25.
The aim is to find the position of the term 25.
The position of the term 25 is given by the value of n when f(n)= 25.
Therefore,
![\begin{gathered} f(n)=25 \\ 1.25n+6.25=25 \\ 1.25n=25-6.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k0pdwc48k2lsof01k1berdclpzlcs4e6l1.png)
Solving further,
![\begin{gathered} 1.25n=18.75 \\ n=(18.75)/(1.25) \\ n=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gtele2g8x90ugmc448yxeyj2zh0h99tatg.png)
Hence, the position of term 25 is 15.