Answer:
2+x
Step-by-step explanation:
Given the following:
![\begin{gathered} \log _25=x \\ \log _23=y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/57537rb3k9fyhv0x4e7aop5limpfqzt88g.png)
The idea is to express the given integer (20) in terms of either the base or the values given (3 and 5).
![\begin{gathered} \log _220=\log _2(4*5) \\ =\log _2(2^2*5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fttjnej3ir2ykeuyj45yw8xkjk0mtb6ks0.png)
Next, since we have the multiplication sign, we use the addition law:
![=\log _22^2+\log _25](https://img.qammunity.org/2023/formulas/mathematics/college/vi9k25riqc9eiy8zmtagn204q2pey0hyhr.png)
The power of the number becomes the product of the log, so we have:
![=2\log _22+\log _25](https://img.qammunity.org/2023/formulas/mathematics/college/y4ey99wjc5n3sromcka7v2ooe4alvg1clg.png)
When you have the same base and number, the result is always 1.
![\begin{gathered} \log _22=1 \\ \implies2\log _22+\log _25=2(1)+\log _25 \\ =2+x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3sfhrj97h3vc8owmpuy1jk7dcqcicbjvqj.png)
Therefore:
![\text{log}_220=2+x](https://img.qammunity.org/2023/formulas/mathematics/college/fegtift34pe9lksij8k5gk439vnn4f2vsp.png)