23.0k views
2 votes
Write as an algebraic expression of x that does not involve trigonometric functions.

Write as an algebraic expression of x that does not involve trigonometric functions-example-1
User Ashad
by
4.2k points

1 Answer

5 votes

Given:


\cos (\arcsin 3x+\arccos x)
\text{Let A= arcsin3x ; B= arccosx}
\sin A=3x\text{ ; }cosB=x
\cos (A+B)=\cos A\cos B-\sin A\sin B
\cos (A+B)=\cos A(x)-\sin B(3x)
\cos (A+B)=\sqrt[]{1-\sin^2A}(x)-\sqrt[]{1-\cos^2B}(3x)
\cos (A+B)=\sqrt[]{1-9x^2}(x)-\sqrt[]{1-x^2}(3x)
\cos (A+B)=x\sqrt[]{1-9x^2}-3x\sqrt[]{1-x^2}

Therefore, 1st option is the correct answer.

User Tsang
by
4.2k points