Givens.
• The mass is 20 kg. (m = 20kg)
,
• The applied force is 63 N. (F = 63 N).
First, we have to make a free-body diagram to visualize the problem and its vectors.
Use Newton's Second Law for the horizontal vectors and vertical vectors.
![\begin{gathered} \Sigma F_x=ma=0\to F-F_(\mu)=0 \\ \Sigma F_y=ma=0\to N-W=0 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/koj0diajz5z4jn86xb7lekboigwp93d3xx.png)
Use the equations for weight and friction force.
![\begin{gathered} W=mg \\ F_(\mu)=\mu N=\mu mg \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/8mzedfh3fpffuo510hrdcrj9u5nlspute6.png)
![F-\mu N=0\to F=\mu N\to\mu=(F)/(N)\to\mu=(F)/(mg)](https://img.qammunity.org/2023/formulas/physics/college/x65gtnyl2yrtmgb8l3en0g1azimhi56i75.png)
Where F = 65 N, m = 20kg, and g = 9.8 m/s^2.
![\begin{gathered} \mu=\frac{65N}{20\operatorname{kg}\cdot9.8((m)/(s^2))} \\ \mu=(65N)/(196N) \\ \mu\approx0.33 \end{gathered}]()
Therefore, the kinetic friction coefficient is 0.33.