We are given the following equation:
![6x^2+6x+3=0](https://img.qammunity.org/2023/formulas/mathematics/college/9f5qgow3kxhk8osvyxgscbt4lhz58ohfb2.png)
This is an equation of the form:
![ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/mvkhuzwnjhb4epaf7jjcoq2vi4zdi4350m.png)
The discriminant of the equation is:
![d=b^2-4ac](https://img.qammunity.org/2023/formulas/mathematics/college/okv9ev7nqgse2ybwvnmabsz5ci97w66k91.png)
We have 3 possible cases:
![d<0](https://img.qammunity.org/2023/formulas/mathematics/college/pucre2mdrwg878i7r8zusaxiykg901g7g1.png)
There are two imaginary solutions
![d=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/y25zk3ipd7htree02z2iblh6ou3sl1t099.png)
one real solution
![d>0](https://img.qammunity.org/2023/formulas/mathematics/college/b3nkpcsyk2i2azy52otble02qoubqrlgvc.png)
Two real solutions.
Replacing the values:
![d=(6)^2-4(6)(3)](https://img.qammunity.org/2023/formulas/mathematics/college/gkrb4wykrwlzhq40td89bgfhw58w2pb4pe.png)
Solving the operations:
![\begin{gathered} d=36-72 \\ d=-36 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l7ukdxgkxhax5im5unttvhkxpv1qsh2gt2.png)
We have:
![d<0](https://img.qammunity.org/2023/formulas/mathematics/college/pucre2mdrwg878i7r8zusaxiykg901g7g1.png)
This means that we have 2 imaginary solutions.