The sine rule is used when we are given either
a) two angles and one side, or
b) two sides and a non-included angle.
The cosine rule is used when we are given either
a) three sides or
b) two sides and the included angle.
For the given problem, we are given a non-included angle and two sides. Hence, we have to solve the problem using the law of sines.
The sine rule states that:
![\frac{\sin\text{ A}}{a}\text{ =}\frac{\sin\text{ B}}{b}\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/c5plpkglaqetf914vckay9wr5nx5y8w29a.png)
We have:
A = 35 degrees, b = 13, a = 11
Substituting we have:
![\begin{gathered} (\sin35^0)/(11)=\text{ }\frac{\sin \text{ B}}{13} \\ \text{Cross}-\text{Multiply} \\ \sin \text{ B }*11=sin35^0*13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jveexfeno55cjki1vtcpkb5ruafoiha5wb.png)
Divide both sides by 11 and solving for B:
![\begin{gathered} \sin \text{ B = }\frac{\sin \text{ 35 }*13}{11} \\ \sin \text{ B = 0.677863} \\ B\text{ = 42.68} \\ \approx\text{ 42.7} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hhgdo7us9an0i8jdshcou6ysl3makrs4ek.png)
Using the property of triangles, we can find the angle C:
![\begin{gathered} \angle\text{ A + }\angle\text{ B + }\angle\text{ C =180 (sum of angles in a triangle)} \\ \angle\text{ C = 180 - 42.7 - 35} \\ \angle C\text{=1}02.3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ewskol09az3pzsner0uk5tm06zv6f6z2yx.png)
Using the sine rule, we can solve for the unknown side c. We have:
![\begin{gathered} \frac{\sin\text{ C}}{c}=\text{ }\frac{\sin \text{ B}}{b} \\ \frac{\sin\text{ 102.3}}{c}=\text{ }\frac{\sin \text{ 42.7}}{13} \\ \text{Cross}-\text{Multiply} \\ c\text{ }*\text{ sin 42.7 = sin 102.3 }*\text{ 13} \\ c\text{ = }\frac{\sin \text{ 102.3 }*13}{\sin \text{ 42.7}} \\ c\text{ = 18.7295} \\ c\text{ }\approx\text{ 18.7} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nellmcue35pjut9zy1uqq0fyt573ou8sjo.png)
Answer summary
Law of Sines; B ≈ 42.7°, C ≈ 102.3°, c ≈ 18.7