ANSWER:
Explanation:
We have that the population function has the following form:
![y=A\cdot e^(kt)](https://img.qammunity.org/2023/formulas/mathematics/college/wmrui077j71sl05y9r6v5k6k2y5bq6wzai.png)
Where y is the population after t time, A is the initial population and k is the growth constant.
Therefore, for each case, we calculate the value of k:
(a)
t = 4
y = 1375000
A = 1309000
Solving for k:
![\begin{gathered} 1375000=1309000\cdot\: e^(k\cdot4) \\ e^(4k)=(1375000)/(1309000) \\ 4k=\ln \: \mleft((1375000)/(1309000)\mright) \\ k=(\ln\mleft((1375000)/(1309000)\mright))/(4) \\ k=0.01229\cong0.0123\rightarrow1.23\text{\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nt9rwlgny74ci9tf2xjw2l4czmofjqfhey.png)
(b)
t = 4
y = 1386000
A = 1375000
Solving for k:
![\begin{gathered} 1386000=1375000\cdot\: e^(k\cdot4) \\ e^(4k)=(1386000)/(1375000) \\ 4k=\ln \: \: \: \mleft((1386000)/(1375000)\mright) \\ k=(\ln \mleft((1386000)/(1375000)\mright))/(4) \\ k=0.00199\cong0.002\rightarrow0.20\text{\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9rhq1txt71j4l7xclwpozno79cx1ennl71.png)
(c)
To compare we calculate the quotient between both periods:
![undefined]()