Given that the resistances are connected in parallel.
![\begin{gathered} R_1=6\text{ ohm} \\ R_2=21\text{ ohms} \\ R_3\text{ = 27 ohms} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/trh3qyui3jjz9oldby3gdfjchrpb25rnuh.png)
Also, the total voltage is 7 V.
The formula to find the equivalent resistance connected in parallel is
![(1)/(R)=(1)/(R_1)+(1)/(R_2)+(1)/(R_3)](https://img.qammunity.org/2023/formulas/physics/college/yku8el15zmf2skz2k3kdzmk4jlpgaejkac.png)
Substituting the values, the resistance will be
![\begin{gathered} (1)/(R)=(1)/(6)+(1)/(21)+(1)/(27) \\ =(63+18+14)/(378) \\ =(95)/(378) \\ R=3.97\text{ ohm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/kcx9j3vp2a068iztr8l8i34y10mxoftqlj.png)
Thus, the total resistance of the circuit is 3.97 ohms.