![\begin{gathered} \text{Given} \\ \mu=3.56 \\ \sigma=0.25 \\ x=3.22 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y51cpaaz2a0yoefyt31w1ocs433hedqes0.png)
First, find the z-value of the given sample
![\begin{gathered} z=(x-\mu)/(\sigma) \\ z=(3.22-3.56)/(0.25) \\ z=(-0.34)/(0.25) \\ z=-1.36 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4ufy45kr60e988t5ijq39bgvjux70mz9sq.png)
Now that we have the z-score, find P(Z > -1.36)
The area to the left of z-score, when z = -1.36 is equal to 0.08691.
Use this to solve for P(Z > -1.36)
![\begin{gathered} P(z>-1.36)=1-0.08691 \\ P(z>-1.36)=0.91309 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yinvfdlsksp7kvjyh91luf9z4v0qwwqft3.png)
Multiply by 100% to get the percentage and we have
![0.91309\cdot100\%=91.309\%](https://img.qammunity.org/2023/formulas/mathematics/college/wtlwiok6zug03jlooi29yu2tmtirisn2gm.png)
Rounding the answer to two decimal places, the percentage of tomato plants that has a height of 3.22 feet or greater is 91.31%.