78.6k views
3 votes
(1) T(x, y) = (x - 6, y) and label S'KTRT" (2) Reflect SKIRT over the x-axis and label S'K'T"R"T". Write the rule using the notation. (3) Shift SKIRT 4 units up and 5 units right and label STK'T''R''T". Write the rule, (4) Write the new coordinates of K" after shifting K"9 units up & 12 left.

(1) T(x, y) = (x - 6, y) and label S'KTRT" (2) Reflect SKIRT over the x-axis-example-1
User Baerkins
by
4.4k points

1 Answer

3 votes

1)

The transformation given is


T(x,y)\rightarrow(x-6,y)

this means that we have to substract 6 to every x coordinate.

The new coordinates are:


\begin{gathered} S(7,-5)\rightarrow S^(\prime)(1,-5) \\ K(9,-4)\rightarrow K^(\prime)(3,-4) \\ I(8,-7)\rightarrow I^(\prime)(2,-7) \\ R(9,-9)\rightarrow R^(\prime)(3,-9) \\ T(7,-8)\rightarrow T^(\prime)(1,-8) \end{gathered}

2)

A reflection across the x axis is given by:


(x,y)\rightarrow(x,-y)

The new coordinates are:


\begin{gathered} S^(\prime)(1,-5)\rightarrow S^(\doubleprime)(1,5) \\ K^(\prime)(3,-4)\rightarrow K^(\doubleprime)(3,4) \\ I^(\prime)(2,-7)\rightarrow I^(\doubleprime)(2,7) \\ R^(\prime)(3,-9)\rightarrow R^(\doubleprime)(3,9) \\ T^(\prime)(1,-8)\rightarrow T^(\doubleprime)(1,8) \end{gathered}

3)

User Ferroao
by
4.6k points