Answer:
![\text{The manager has 18 fifty-dollar bills.}](https://img.qammunity.org/2023/formulas/mathematics/college/yrvfehr958stt90t4je4du4zufw787qxjl.png)
Explanation:
To solve this situation we can create a system of equations with the given information.
Let x be the number of twenties
Let y be the number of fifties.
If she has a total of $1,520:
![20x+50y=1520\text{ (1)}](https://img.qammunity.org/2023/formulas/mathematics/college/csb15hxfzfv0qfeejrm5ymyo7pumufuniw.png)
She has a total of 49 bills:
![\begin{gathered} x+y=49 \\ x=49-y\text{ (2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ct7v6q5y1em06372f5kkhao97j1z4fkdxi.png)
Then, substitute equation (2) into equation (1):
![\begin{gathered} 20(49-y)+50y=1520 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/th2wnaeybp1egz5p7ax5ix10o51m40rp6u.png)
Solve for y.
![\begin{gathered} 980-20y+50y=1520 \\ 30y=1520-980 \\ y=(540)/(30) \\ y=18\text{ fifty}-\text{dollars} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sczgysuy6juc7q5qrsq4tjuboaygm38qnd.png)