ANSWER
![\begin{gathered} 1)4.39m/s^2 \\ 2)96.58N \\ 3)971.96N \\ 4)6.66m/s^2 \\ 5)14.06m/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/xkcicjbhu2oibtqyayoy818djs8h2zrinc.png)
Step-by-step explanation
Parameters given:
Mass of smaller crate, m1 = 22 kg
Mass of larger crate, m2 = 92 kg
Coefficient of static friction between two crates, μs = 0.87
Coefficient of kinetic friction between two crates, μk = 0.68
1) The sum of forces acting in the horizontal direction on the smaller crate is:
![F=m_1a_1](https://img.qammunity.org/2023/formulas/physics/college/cv4x4z6rdxvxb8pwxcxmhetr50w2cdkgvn.png)
The sum of forces acting in the horizontal direction on the larger crate is:
![T-F=m_2a_2](https://img.qammunity.org/2023/formulas/physics/college/j322ihzmz32uk3ueomuww9g6wy026qasuh.png)
where F = frictional force, T = tension
To find the acceleration of the smaller crate, we have to substitute F from the first equation into the second equation:
![T-m_1a_1=m_2a_2](https://img.qammunity.org/2023/formulas/physics/college/znanh76j59y3rq9oxxlaubx4bpq2f6thwh.png)
The acceleration is equal for both crates since the upper crate is static during the motion, which implies that:
![\begin{gathered} T=m_1a+m_2a \\ T=a(m_1+m_2) \\ \Rightarrow a=(T)/(m_1+m_2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/adop55kx5lg25ahbaju0512srcho77wxwc.png)
Substitute the given values:
![\begin{gathered} a=(500)/(22+92) \\ a=4.39m/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/bqxswp7c2vlqhit8u1xplwop14cl85zt29.png)
That is the acceleration of the smaller crate.
2) To find the frictional force on the smaller crate, substitute the value of acceleration, a, into the first equation:
![\begin{gathered} \Rightarrow F=22\cdot4.39 \\ F=96.58N \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/wzdib93rq8zsk3721gqvw829gh8uxlcnmc.png)
3) The maximum tension that the rope can be pulled at will occur when there is maximum friction.
That is:
![F_{s(\text{max)}}=\mu_s\cdot m_2\cdot g](https://img.qammunity.org/2023/formulas/physics/college/tjs4g7cm6zgi39bvxox4xrhjflm4mwuxs5.png)
Applying the same principle from the first equation:
![\begin{gathered} F=ma \\ \Rightarrow F_2=m_2a \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ryjm1sdrvhkz2v8l9lec76jljb7aq3dvjv.png)
This implies that:
![\begin{gathered} m_2a=\mu_s\cdot m_2\cdot g \\ \Rightarrow a=\mu_s\cdot g \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/yg4b4erhq5pqb1a5mnyncrkr7mmhdibzw1.png)
To find the tension, apply the already given formula:
![\begin{gathered} T=m_1a+m_2a=(m_1+m_2)a \\ T=(m_1+m_2)\cdot\mu_s\cdot g \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/pp1wklew13kjm26855tp6nq65573dislq7.png)
Therefore, the max tension is:
![\begin{gathered} T=(22+92)\cdot0.87\cdot9.8 \\ T=114\cdot0.87\cdot9.8 \\ T=971.96N \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/t10kc2zrz3sxvjoj1rbnsl6dvp2sihsvh6.png)
4) To find the acceleration of the smaller crate, we apply the formula for kinetic friction:
![F_k=\mu_k\cdot m_1\cdot g](https://img.qammunity.org/2023/formulas/physics/college/al9qv58kab77en6wi375vu7sj5bvbp2foj.png)
Recall that:
![F=m_1\cdot a_1](https://img.qammunity.org/2023/formulas/physics/college/mlaogbowpjt3nwqspaoley02wxhgnnwsyr.png)
Therefore:
![\begin{gathered} m_1\cdot a_1=\mu_k\cdot m_1\cdot g \\ \Rightarrow a_1=\mu_k\cdot g \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ycoqkfmy0817i0y8axkyi30r9pne1djp1d.png)
Substitute the given values:
![\begin{gathered} a_1=0.68\cdot9.8 \\ a_1=6.66m/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/fgiqdusbuuvhgdnh0slrwfavjvjtngrcwd.png)
That is the acceleration of the smaller/upper crate.
5) Recall from the second equation that:
![T-F=m_2a_2](https://img.qammunity.org/2023/formulas/physics/college/j322ihzmz32uk3ueomuww9g6wy026qasuh.png)
Substitute the formula for kinetic friction:
![\begin{gathered} T-\mu_k\cdot m_1\cdot g=m_2\cdot a_2 \\ \Rightarrow a_2=(T-\mu_k\cdot m_1\cdot g)/(m_2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/c20obf1bwrrhyzw6laxtkfjknn2wz3ylit.png)
Substitute the given values to solve for a2:
![\begin{gathered} a_2=(1440-(0.68\cdot22\cdot9.8))/(92) \\ a_2=(1440-146.608)/(92) \\ a_2=14.06m/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6kz5gvaaqvecvfherjbipwgaka7keqfw6q.png)
That is the acceleration of the larger/lower crate.