We must do the dimensional analysis to solve that problem, then, to have L in the denominator let's multiply $/gal by gal/L, if we do that
![\frac{\$}{\text{ gal}}\cdot\frac{\text{ gal}}{\text{ L}}=\frac{\$}{\text{ L}}](https://img.qammunity.org/2023/formulas/mathematics/college/gzt6yv8gqbxy7pb5sjg6yy54ed9ud3najk.png)
Now we have a dollar per liter ($/L) we must change the dollar to pesos, then let's use pesos/$, it will result in
![(\$)/(L)\cdot\frac{\text{ pesos}}{\$}=\frac{\text{ pesos}}{L}](https://img.qammunity.org/2023/formulas/mathematics/college/ldvde5gepklyv6veb7wqcg5gcwr1azj8pb.png)
Now we know the order we can just multiply the vales:, see that
![\frac{\$}{\text{ gal}}\cdot\frac{\text{ gal}}{\text{ L}}\cdot\frac{\text{ pesos}}{\$}=\frac{\text{ pesos}}{L}](https://img.qammunity.org/2023/formulas/mathematics/college/ddkknpzmtkqsrlg7p9gq98qsxdzf8e5xfi.png)
Then let's do it using the values
![\frac{2.82\operatorname{\$}}{\text{gal}}\cdot\frac{\text{gal}}{3.79\text{L}}\cdot\frac{\text{pesos}}{0.053\operatorname{\$}}=14.04\frac{\text{pesos}}{L}]()
The final answer is
![14.04\cdot\frac{\text{ pesos}}{L}](https://img.qammunity.org/2023/formulas/mathematics/college/nj7y9okgu8pk3ri1ra0qulzjh4xkxdqnc9.png)