152k views
4 votes
Find outside surface area and volume of the solid object assume that the base is regular

Find outside surface area and volume of the solid object assume that the base is regular-example-1

1 Answer

1 vote

The solid object shown is the frustum of a square based pyramid..

To calculate the total surface area, we shall follow the procedure below;


\begin{gathered} \text{Total Surface Area}=TSA \\ \text{TSA}=\lbrack(1)/(2)(P_1+P_2)L\rbrack+B_1+B_2 \\ \text{Where the variables are;} \\ P_1=Perimeter\text{ of base 1} \\ P_2=\text{Perimeter of base 2} \\ L=Slant\text{ height} \\ B_1=\text{Area of base 1} \\ B_2=\text{Area of base 2} \end{gathered}

We shall now solve as follows;


\begin{gathered} P_1=2(l+w) \\ P_1=2(14+14) \\ P_1=2(28) \\ P_1=56in \end{gathered}
\begin{gathered} P_2=2(l+w) \\ P_2=2(24+24) \\ P_2=2(48) \\ P_2=96in \end{gathered}
\begin{gathered} B_1=l* w \\ B_1=14*14 \\ B_1=196in^2 \end{gathered}
\begin{gathered} B_2=l* w \\ B_2=24*24 \\ B_2=576in^2 \end{gathered}

The total surface area would now be;


\begin{gathered} \text{TSA}=\lbrack(1)/(2)(P_1+P_2)L\rbrack+B_1+B_2 \\ \text{TSA}=\lbrack(1)/(2)(56+96)19\rbrack+196+576 \\ \text{TSA}=\lbrack(1)/(2)(152)19\rbrack+772 \\ \text{TSA}=\lbrack76*19\rbrack+772 \\ \text{TSA}=1444+772 \\ \text{TSA}=2216in^2 \end{gathered}

The volume of a frustum of a square based pyramid is given as;


\begin{gathered} Vol=(1)/(3)h(B_1+B_2+\sqrt[]{B_1B_2}) \\ \text{Where;} \\ h=vertical\text{ height (altitude)} \end{gathered}

The volume would now be;


\begin{gathered} \text{Vol}=(1)/(3)*15(196+576+\sqrt[]{196*576}) \\ \text{Vol}=5(772+\sqrt[]{112896}) \\ \text{Vol}=5(772+336) \\ \text{Vol}=5(1108) \\ \text{Vol}=5540in^3 \end{gathered}

ANSWER:

Therefore, we have

Total surface area = 2,216 inches squared

Volume = 5,540 inches cubed

User Netpoetica
by
3.3k points