The solid object shown is the frustum of a square based pyramid..
To calculate the total surface area, we shall follow the procedure below;
![\begin{gathered} \text{Total Surface Area}=TSA \\ \text{TSA}=\lbrack(1)/(2)(P_1+P_2)L\rbrack+B_1+B_2 \\ \text{Where the variables are;} \\ P_1=Perimeter\text{ of base 1} \\ P_2=\text{Perimeter of base 2} \\ L=Slant\text{ height} \\ B_1=\text{Area of base 1} \\ B_2=\text{Area of base 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f5a5pxf86jy5bzs87qtp1iextxqg678lib.png)
We shall now solve as follows;
![\begin{gathered} P_1=2(l+w) \\ P_1=2(14+14) \\ P_1=2(28) \\ P_1=56in \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/10lq0fzce67bfn945hzjuxt4vkqioyuc8f.png)
![\begin{gathered} P_2=2(l+w) \\ P_2=2(24+24) \\ P_2=2(48) \\ P_2=96in \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fenmjsi1r915bxmnty6udztuszp345kfmt.png)
![\begin{gathered} B_1=l* w \\ B_1=14*14 \\ B_1=196in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cei2puy4u816bzu35mymz6t8imb3tjv6qn.png)
![\begin{gathered} B_2=l* w \\ B_2=24*24 \\ B_2=576in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kgtof5f0g02ojg9iy2595ic579hg2zvgfc.png)
The total surface area would now be;
![\begin{gathered} \text{TSA}=\lbrack(1)/(2)(P_1+P_2)L\rbrack+B_1+B_2 \\ \text{TSA}=\lbrack(1)/(2)(56+96)19\rbrack+196+576 \\ \text{TSA}=\lbrack(1)/(2)(152)19\rbrack+772 \\ \text{TSA}=\lbrack76*19\rbrack+772 \\ \text{TSA}=1444+772 \\ \text{TSA}=2216in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2llffdbbkhs4lxvffus6qot03be6f2s73h.png)
The volume of a frustum of a square based pyramid is given as;
![\begin{gathered} Vol=(1)/(3)h(B_1+B_2+\sqrt[]{B_1B_2}) \\ \text{Where;} \\ h=vertical\text{ height (altitude)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ptlap1khn9yh61fnm688wbxsduqxehvbp3.png)
The volume would now be;
![\begin{gathered} \text{Vol}=(1)/(3)*15(196+576+\sqrt[]{196*576}) \\ \text{Vol}=5(772+\sqrt[]{112896}) \\ \text{Vol}=5(772+336) \\ \text{Vol}=5(1108) \\ \text{Vol}=5540in^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ugbjlbgiq1a45c9ej8m79wokqqzvuxcna1.png)
ANSWER:
Therefore, we have
Total surface area = 2,216 inches squared
Volume = 5,540 inches cubed