Step 1
Given;
![y=(x^2-4)^4(x^2+1)^5](https://img.qammunity.org/2023/formulas/mathematics/college/d6tferhbibm80s8p349ajk4fjgy569z5it.png)
Required; To find the coordinates of the local minima and maxima
Step 2
Find the local minima and maxima
![\begin{gathered} \mathrm{Suppose\:that\:}x=c\mathrm{\:is\:a\:critical\:point\:of\:}f\left(x\right)\mathrm{\:then,\:} \\ \mathrm{If\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.} \\ \mathrm{If\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)>\:0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:minimum.} \\ \mathrm{If\:}f\:'\left(x\right)\mathrm{\:is\:the\:same\:sign\:on\:both\:sides\:of\:}x=c\mathrm{\:then\:}x=c \\ \mathrm{\:is\:neither\:a\:local\:maximum\:nor\:a\:local\:minimum.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ltq1msmxcy54v2fhf7tpxdu4h78bual41a.png)
Therefore; f'(x) is given as;
![f^(\prime)(x)=2x(x^2-4)^3(x^2+1)^4[9x^2-16]](https://img.qammunity.org/2023/formulas/mathematics/college/hom3cj8qs8euu04ah7wcjy4kz0gdeakxsq.png)
Step 3
Find the increasing and decreasing intervals from the graph
![\begin{gathered} Decreasing;-\inftyPlugin x=-2 into y[tex]\begin{gathered} \mathrm{Minimum}\left(-2,\:0\right) \\ \end{gathered}]()
Plugin -4/3 into y
![\mathrm{Maximum}\left(-(4)/(3),\:(5^(14)\cdot \:256)/(387420489)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/ffwn1g5mmedh749adz8daoxbdyqt8kspya.png)
Plugin x=0 into y
![\mathrm{Minimum}\left(0,\:256\right)](https://img.qammunity.org/2023/formulas/mathematics/college/g52ksmvyurr1kzvqhj9w3d65s5a3ewecma.png)
Plugin x=4/3
![\mathrm{Maximum}\left((4)/(3),\:(5^(14)\cdot \:256)/(387420489)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/qd86ydljs547jwghodjouqwoxc4y6pn3f1.png)
Plugging x=2 into y
![\mathrm{Minimum}\left(2,\:0\right)](https://img.qammunity.org/2023/formulas/mathematics/college/vadaqwdkb50mfbz4bea62ix9mv8yf0xxqt.png)
Answer; The maximum points are;
![\begin{gathered} ((4)/(3),(5^(14)*256)/(387420489))\text{ or \lparen1.33},4033.09) \\ \left(-(4)/(3),\:(5^(14)\cdot\:256)/(387420489)\right)or\text{ \lparen-1.33},\text{ 4033.09\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qdiao0o6rhb2wdocgu7y78jwc9giiqx5xa.png)
The minimum points are ;
![\begin{gathered} \left(-2,\:0\right) \\ \left(0,\:256\right) \\ \left(2,\:0\right) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7jqwerbkmipq92l9fugl9a15qevd191s7w.png)