Area of garden is 4√3 sq. ft.
Given:
A garden is in the shape of an equilateral triangle with sides 4 ft.
The objective is to find the area of the garden.
The formula to find the area of triangle is,
![A=(1)/(2)\cdot b\cdot h](https://img.qammunity.org/2023/formulas/mathematics/college/wq7vjotfhgepqs4yxpt9mcg6piotpjto1p.png)
Here, b represents the side of the triangle and h represents the height of the triangle.
The height of an equilateral triangle can be calculated by,
![\begin{gathered} h=(√(3))/(2)\cdot b \\ =\frac{\sqrt[]{3}_{}}{2}\cdot4 \\ =2\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d0ywf1q6fju7tggog0ck2e2ixeqojo549p.png)
Now substitute the value of b and h in the formula of area of triangle.
![\begin{gathered} A=(1)/(2)\cdot4\cdot2\sqrt[]{3} \\ =4\sqrt[]{3}ft^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3n9i6nhojl1hscfv93wz8j5yhm6536ca0f.png)
Hence, the area of the triangle is 4√3 sq. ft.