Answer:
The measure of arc KD is;
![51^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pfg1f8m9eyxvcazw4u1jqn52c354z40ctt.png)
Step-by-step explanation:
Given the figure in the attached image.
Chord LD and MK intercept at N and also intercept the arc of the circle to form arc LM and KD.
![\begin{gathered} \angle LM=209^(\circ) \\ \angle KD=24x+3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ert3d4s7rdhjgrkfj15qw3wdccxw4e54r9.png)
the angle LNM formed by the two chords is given as;
![\angle LNM=66x-2](https://img.qammunity.org/2023/formulas/mathematics/college/mxk5w5l5duud21hrpq63ooj3lxed8exemo.png)
Recall that the angle formed by two intercepting chords can be calculated using the formula;
![\begin{gathered} \text{ Angle formed by two intercepting chords = }(1)/(2)(\text{ sum of intercepted arc)} \\ \angle LNM=(1)/(2)(\angle LM+\angle KD) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z9fym91sxft87z21tyssk84azjxc35ctqi.png)
Substituting the given values;
![66x-2=(1)/(2)(209+24x+3)](https://img.qammunity.org/2023/formulas/mathematics/college/hxajstg0qu5u5a4kmhvmyegk63fbotkz9x.png)
solving for x;
![\begin{gathered} 66x-2=(1)/(2)(212+24x) \\ 66x-2=106+12x \\ 66x-12x=106+2 \\ 54x=108 \\ x=(108)/(54) \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gcvvcf7wpibaxhobbpk5ljdx8xy65d3kkm.png)
We have the value of x, let us now solve for the measure of arc KD by substituting the value of x;
![\begin{gathered} m\angle KD=24x+3 \\ m\angle KD=24(2)+3 \\ m\angle KD=48+3 \\ m\angle KD=51^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/casx0mh0dp38nhcg8uirrjm3v8pde5jv9w.png)
Therefore, the measure of arc KD is;
![51^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pfg1f8m9eyxvcazw4u1jqn52c354z40ctt.png)