For a confidence level of 95%, you can use the next formula:
![\begin{gathered} (\bar{X}-Z_(\alpha/2)\cdot\frac{\sigma}{\sqrt[]{n}},\bar{X}+Z_(\alpha/2)\cdot\frac{\sigma}{\sqrt[]{n}}) \\ \text{Where, }\bar{X}\text{ is the mean, }\sigma\text{ is the standard deviation, n is the number of the sample} \\ \text{And for a confidence level of 95\% the interval is 1-}\alpha=0.95 \\ \text{Then }\alpha=1-0.95=0.05 \\ \text{And }\alpha/2=0.05/2=0.025 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3o7pc3ztt3omyyqasodqoruj482f0nctcr.png)
If you look at the standard normal probability table, the Z value for 0.025 is -1.96 and 0.95+0.025=0.975, the Z-score for this value is 1.96 then:
![\begin{gathered} (23.96-1.96_{}\cdot\frac{3.61}{\sqrt[]{14}},23.96+1.96_{}\cdot\frac{3.61}{\sqrt[]{14}}) \\ (23.96-1.89,23.96+1.89) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/foa3qas487vxcv4c6ca0ard401s5uyah91.png)
The interval confidence is then (22.07, 25.85)