The question requires that we use the binomial probability distribution
To do this, we will use the binomial formula
![^nC_r* P^r* q^(n-r)](https://img.qammunity.org/2023/formulas/mathematics/college/mafn14jf865mrumny9odfp6154o9njhntw.png)
Where
![\begin{gathered} P=\text{ probability of success} \\ q=\text{ probabilty of failure} \\ n=\text{ number of times} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/330sqblaq4d6g0aru2kbf3by59kxte5zxv.png)
In our case
![P=76\text{ \%=}(76)/(100)=0.76](https://img.qammunity.org/2023/formulas/mathematics/college/60h82t45ie1kgxgih3eualkdrstxnpq5y1.png)
![\begin{gathered} q=1-p=1-0.76=0.24 \\ q=0.24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1940bw1cj8udi22pukno6qjv6opm7ool63.png)
![n=12](https://img.qammunity.org/2023/formulas/mathematics/high-school/l6xrfmvkmidxtlqqijnqsox8k8056o0r6r.png)
For the first question,
We are told to find the probability that exactly 6 jurors are Asian American
In this case,
![\begin{gathered} r=6 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ew03mjkdjsvkow6alpiz9tl0ju6e7dyttu.png)
So applying the formula
![\begin{gathered} (P=6)=>^(12)C_6*0.76^6*0.24^(12-6)=^(12)C_6*0.76^6*0.24^6 \\ \\ (P=6)\Rightarrow924*0.1927*1.911*10^(-4)=0.0340 \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dfqq6780113fhjzuwo90c4kx6jbra7czll.png)
Thus, the probability that exactly 6 jurors are Asian American =0.0340
For the second question
We are told to find the probability of 6 or fewer than 6 are Asian Americans
![\begin{gathered} \text{When r=0} \\ (P=0)\Rightarrow^(12)C_0*0.76^0*0.24^(12)=^(12)C_0*0.76^0*0.24^(12) \\ (P=0)=1*1*3.65^{}*10^(-8) \\ P\text{ is appro}\xi mately\text{ 0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vbkkn9lw1mmsm7823ya0kaiajr24dveeg3.png)
We will repeat this for when r=1, 2, 3, 4, 5 and 6
And then we will sum the values up
![\begin{gathered} \text{When r=1} \\ P=\text{appro}\xi\text{mately 0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m7oppnq064w4eych5bymg17m0craodutay.png)
![\begin{gathered} when\text{ r=2} \\ P\approx0.0002 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xi5y9k5gpao3xfh75by4c4mlx0jpsdi937.png)
![\begin{gathered} \text{when r=3} \\ P\approx0.00026 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kj7abtbonlub85hkv7tgdhl7h76kdsn3ja.png)
![\begin{gathered} \text{when r=4} \\ P\approx0.00182 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xrzvhi7fcs6tccvx3hbg1kb0201p98d0nq.png)
![\begin{gathered} \text{when r=5} \\ P=0.00921 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ydh9i2vg9dxeg8aivvwb7zrbpkaj8n2jqt.png)
![\begin{gathered} \text{when r=6} \\ P=0.03403 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xk8m4xi0i6y3dczzdjk6tnp9cm2sm1ao1j.png)
Then
The probability of 6 or fewer than 6 are Asian Americans = P(0)+P(1)+P(2)+P(3)+P(4)+P(5)+P(6)
Thus,
The probability of 6 or fewer than 6 are Asian Americans = 0+0+0.00002+0.00026+0.00182+0.00921+0.03403=0.04534
The probability of 6 or fewer than 6 is Asian Americans=0.04534
For the third part
The probability of more than 10 will be
The sum of the probabilities when r = 11 and r =12
![\begin{gathered} \text{when r=11} \\ ^(12)C_(11)*0.76^(11)*0.24^(12-11)=^(12)C_(11)*0.76^(11)*0.24^1=0.14072 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4ytv2b0xhlwa9y3l93x6g2pvp4kg7a0dih.png)
![\begin{gathered} \text{when r=12} \\ ^(12)C_(12)*0.76^(12)*0.24^(12-12)=^(12)C_(12)*0.76^(12)*0.24^0=0.03713 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5x1taq4570rt26dqypdotft8tsnwqovacs.png)
Thus, the total probability = P(11) + P(12)= 0.14072 +0.03713 = 0.17785
Hence,
The probability of more than 10 Asian-Americans will be = 0.17785