The equation of the parabola is given to be:
![y=x^2+6x-17](https://img.qammunity.org/2023/formulas/mathematics/college/ztfi4xj09cnnmmci42b0xooton1rfrrw2n.png)
X-INTERCEPTS
To find the x-intercepts, we can substitute y = 0 in the equation. This gives us:
![x^2+6x-17=0](https://img.qammunity.org/2023/formulas/mathematics/college/jmzzdfebuzouy844s9uwkmevooqrh6yjjc.png)
This is a quadratic equation. To solve it, we can use the Quadratic Formula given as:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
where a and b are the coefficients of the variables with power 2 and 1 respectively and c is the constant term.
We can use the following parameters to solve the question:
![\begin{gathered} a=1 \\ b=6 \\ c=-17 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tcp8jvivhvdoqlf08o5yzvdxrxvvom9sxy.png)
Inputting into the formula, we have:
![\begin{gathered} x=\frac{-6\pm\sqrt[]{6^2-(4*1*\lbrack-17\rbrack)}}{2*1}=\frac{-6\pm\sqrt[]{36+68}}{2} \\ x=\frac{-6\pm\sqrt[]{104}}{2}=(-6\pm10.20)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zpm249b6pcmw5h5cv0o1udfs2w8sewilzk.png)
Therefore, the values for x can be:
![x=(-6+10.20)/(2)=2.10](https://img.qammunity.org/2023/formulas/mathematics/college/tpn8y4866x36h262b27gnaeydvfccae4a3.png)
or
![x=(-6-10.20)/(2)=-8.10](https://img.qammunity.org/2023/formulas/mathematics/college/7x5lcw7a2yeikitti60xzlhs3bb25w76hp.png)
Therefore, the x-intercepts are (-8.10, 0) and (2.10, 0).
Y-INTERCEPT
The y-intercept of the parabola can be gotten by substituting x = 0 into the equation as shown below:
![\begin{gathered} y=(0)^2+6(0)-17 \\ y=-17 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8470zu056iq82xsmsle6ctfpls33ko5zel.png)
The y-intercept of the parabola is (0, -