23,757 views
0 votes
0 votes
Which choice is equivalent to the fraction below when x2 1? Hint: Rationalize the denominator and simplify. 1 √x - √x-1 O A. - x - 1 - fx O B. x B. + VX-1 o + - 2x-1 O D. &x - √x-1

User Gnarf
by
2.9k points

1 Answer

6 votes
6 votes

We have


\frac{\sqrt[]{8}}{\sqrt[]{2}-2}
\frac{\sqrt[]{4\cdot2}}{\sqrt[]{2}-2}
\frac{\sqrt[]{4}\cdot\sqrt[]{2}}{\sqrt[]{2}-2}
\frac{2\sqrt[]{2}}{\sqrt[]{2}-2}

We rationalize the denominator


\frac{\sqrt[]{2}+2}{\sqrt[]{2}+2}\cdot\frac{2\sqrt[]{2}}{\sqrt[]{2}-2}

then we simplify


\frac{4+4\sqrt[]{2}}{-2}

Finally, we obtain


-2-2\sqrt[]{2}

User Logan Wayne
by
2.9k points