Given:
![x^2+y^2-2x+6y=-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/bsrk95tfjy294olie6fldg2hhh61m0m2rn.png)
is given as the equation of circle.
Required:
The coordinates of the center and the length of the radius of the circle.
Step-by-step explanation:
The general equation of circle is
![x^2+y^2+2gx+2fy+c=o](https://img.qammunity.org/2023/formulas/mathematics/high-school/nmyspcu6dgklwhxek4s42up3kv9k0nz0di.png)
where
![\begin{gathered} center=(-g,-f) \\ and \\ radius=\sqrt[]{g^2+f^2-c} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h5hc73eos68govuoi6jztt1zdelfth99i1.png)
now by comparing the general and given equation we get
![\begin{gathered} g=-1 \\ f=3 \\ c=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/aamhtucg9603q4cz8gcw4vf0nm71dvesrw.png)
now substitute in the formulas
![center=(-g,-f)=(1,-3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nfpjzpqq90karg9obrro2ifst8soab7tc6.png)
![radius=\sqrt[]{g^2+f^2-c}=\sqrt[]{7}=2.65](https://img.qammunity.org/2023/formulas/mathematics/high-school/dxn4hr7kfczxex83a7zm3wkba2zzdj3akx.png)
Final answer:
![\begin{gathered} center=(1,-3) \\ and \\ radius=2.65 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/iug4jqcewb4hwrata4sb39ggyqpgqla2z6.png)