Solution:
To find the line of best fit for the scatterplot, we pick points from the graph as shown below
From the graph,
![\begin{gathered} (x_1,y_1)\Rightarrow(2,8) \\ (x_2,y_2)\Rightarrow(1,9) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6yj9dkfjdntmcihu3qa4tuqs1805qt1t6l.png)
To find the equation of a straight line, the formula is
![(y-y_1)/(x-x_1)=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/3wt52xf3n7hjhwt6qolt0l02t41489sre0.png)
Substitute the coordinates into the formula above
![\begin{gathered} (y-8)/(x-2)=(9-8)/(1-2) \\ (y-8)/(x-2)=(1)/(-1) \\ (y-8)/(x-2)=(-1)/(1) \\ Crossmultiply \\ 1(y-8)=-1(x-2) \\ y-8=-x+2 \\ y=-x+2+8 \\ y=-x+10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/inf7f5gh6j43ustvn9bs3ds47806kn5trx.png)
Hence, the line of best fit is
![y=-x+10](https://img.qammunity.org/2023/formulas/mathematics/high-school/aci6n5b5jp8613m43pciq8tb7d4inpdq5a.png)