Draw a diagram to visualize the situation:
Notice that φ+θ=90°.
Assuming that the angle φ has a measure of 75°, then:
![\begin{gathered} 75+\theta=90 \\ \Rightarrow\theta=90-75 \\ \Rightarrow\theta=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ndmuhnmmp33kroe6fuashxdwikbygec15l.png)
Notice that the flagpole and its shadow are the legs of a right triangle. Recall the definition of the tangent of an angle in a right triangle:
![\tan (A)=\frac{\text{Side opposite to A}}{\text{ Side adjacent to A}}](https://img.qammunity.org/2023/formulas/mathematics/college/dfaflw3nc9dp5y8li8e06gmu7gk1j4cxfz.png)
Then, in this case:
![\tan (\theta)=(h)/(5.9m)](https://img.qammunity.org/2023/formulas/mathematics/college/8eciggyx8od7z7vqmyvw8srw7085khj409.png)
Substitute the value of θ into the equation and isolate h. Then, use a calculator to find the value of h:
![\begin{gathered} h=5.9m*\tan (15) \\ \Rightarrow h=5.9m*0.26795\ldots \\ \Rightarrow h=1.5809\ldots m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o2acm9cpdp8pz0521lizf26gzdxqokytb7.png)
Therefore, to the nearest tenth:
![h=1.6m](https://img.qammunity.org/2023/formulas/mathematics/college/c6uhxosv8mr4ms51dzbdhi6ufo5kk83osm.png)