Solution
Given the linear equation,
![-3x-9y=-18\text{ ----\lparen1\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/vd2y78t4jvmqzjudctjhhh1jttgk0turzg.png)
To determine the y-intercept, we need to write it in the form y = mx + c
where m is the gradient and c is the y-intercept.
Adding, 3x to both sides of (1)
![\begin{gathered} \Rightarrow-3x+3x-9y=3x-18 \\ \\ \Rightarrow-9y=3x-18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pocbujj6jaismsjsg2z1xap9kop6ugbj18.png)
Dividing both sides by -9
![\begin{gathered} \Rightarrow y=-(3)/(9)x-(18)/(-9) \\ \\ \Rightarrow y=-(1)/(3)x+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fdzgm7ghw2skqvps5stwd908pe9fqj2u9h.png)
Hence, the y-intercept is 2
To find the x intercept, we equate y = 0 and the find the value of x
![\begin{gathered} \Rightarrow0=-(1)/(3)x+2 \\ \\ \Rightarrow(1)/(3)x=2 \\ \\ \Rightarrow x=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6act5qqzci77jq4knvkq61xoq9ednprgs3.png)
Therefore, the x-intercept is 6.
Knowing the x and y intercept, we can proceed to graph the linear function.