For the given question, we will find the equation of the parabola of each box
then, we will select the correct equation from the tiles
The first box: focus (2, -2) and directrix y = -8
So, the parabola will open up and the equation will be:
![\begin{gathered} h=2;k=(-8+(-2))/(2)=-5 \\ (x-h)^2=4\cdot a(y-k) \\ a=3 \\ \\ (x-2)^2=12\cdot(y+5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hb8c7r1vcm0yg4h7ac06z0axyl59uik9ub.png)
simplify the equation
![\begin{gathered} x^2-4x+4=12y+60 \\ y=(x^2)/(12)-(x)/(3)-(14)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hwx4ip7d4c7dwc499vo25bv3j5d0d53qam.png)
The second box: Focus (-3, 6) and Directrix (x = -11)
So, the parabola will open right
The values of (a) and the vertex (h,k) will be:
![\begin{gathered} a=(-3-(-11))/(2)=(-3+11)/(2)=(8)/(2)=4 \\ \\ h=(-3+(-11))/(2)=-7;k=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/v55b5vncyx7w85nbkmo6g737bdm4e92632.png)
The equation of the parabola will be:
![\begin{gathered} (y-k)^2=4a(x-h) \\ (y-6)^2=4\cdot4(x+7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rjyallvsmnagrzewy1jkwsacjhclaidt4a.png)
Simplifying the equation:
![\begin{gathered} y^2-12y+36=16x+112 \\ x=(y^2)/(16)-(3y)/(4)-(19)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/306mkctx6sxvsewnpgs6dwm9jil3n7okq1.png)
The third box: Focus (2, -2); Directrix (x = 8)
So, the parabola will open left
The values of (a) and the vertex (h,k) will be:
![\begin{gathered} a=(8-2)/(2)=(6)/(2)=3 \\ h=(8+2)/(2)=5;k=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4w37ottkhbbj5x7i4g32qxwtpmqnvmp8wr.png)
The equation of the parabola will be:
![\begin{gathered} (y-k)^2=-4a(x-h) \\ (y+2)^2=-12(x-5) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/v7hyjby3kg9vyxqodz2uh8bdehvrm3gcyh.png)
Simplifying the equation:
![\begin{gathered} y^2+4y+4=-12x+60 \\ x=-(y^2)/(12)-(y)/(3)+(14)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/snqlu91zjnph0qqa2uljavfppipdcupilv.png)
The fourth box: Focus (-7, 1) and Directrix (y = 11)
The parabola will open down
The values of (a) and the vertex (h,k) will be:
![\begin{gathered} a=(11-1)/(2)=(10)/(2)=5 \\ h=-7;k=(11+1)/(2)=(12)/(2)=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zytc6u0jtdpfzqkgolk3f48gzbo8yx389x.png)
The equation of the parabola will be:
![\begin{gathered} (x-h)^2=-4a(y-k) \\ (x+7)^2=-20(y-6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jacgdzbdrghesug75c392c4p7c3osvg6ud.png)
Simplifying the equation:
![\begin{gathered} x^2+14x+49=-20y+120 \\ \\ y=-(x^2)/(20)-(7x)/(10)+(71)/(20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zzqk2qne2k6tt72fygr4ft41syorw6k0ff.png)
The drag of the tiles to the boxes according to the following figure: