According to the binomial distribution of probability
![P(k;n,p)=P(X=k)=(nbinomialk)p^k(1-p)^(n-k)](https://img.qammunity.org/2023/formulas/mathematics/college/sw7ii33rolqo8axv3p2zjhrme8ams186g2.png)
In our case,
![n=10,p=68\text{percent}=0.68](https://img.qammunity.org/2023/formulas/mathematics/college/ee87k5yuf3oh52e780krg5q2yme2w6djz5.png)
Therefore,
![P(k\ge5)=\sum ^(10)_(k=5)(10binomialk)(0.68)^k(1-0.68)^(10-k)](https://img.qammunity.org/2023/formulas/mathematics/college/x7wwv4evxhor0tw8bvqpo8pz56ijw8i9uv.png)
Thus,
![\Rightarrow P(k\ge5)=(10binomial5)(0.68)^5(0.32)^5+(10binomial6)(0.68)^6(0.32)^4+(10binomial7)(0.68)^7(0.32)^3+(10binomial8)(0.68)^8(0.32)^2+(10binomial9)(0.68)^9(0.32)^1+(10binomial10)(0.68)^(10)(0.32)^0](https://img.qammunity.org/2023/formulas/mathematics/college/6j4ncba600gnt206pu5y5bgjjfvv970n14.png)
After calculations, we reach the following result
![\Rightarrow P(k\ge5)=0.9362\ldots](https://img.qammunity.org/2023/formulas/mathematics/college/878xuily0qer2nzmtzzkgmdyf094mpk8ov.png)
Then, the probability of Denita winning a medal in at least 5 of the next 10 races is, approximately 93.63%. The close option is 100%