149k views
2 votes
I need help with these questions. Please help and please explain step-by-step explanation

1. Find the value of c that gives the function the given minimum value.

f (x) = 4x^2+ 12x + c; minimum value -5
A40
B-40
C c=-14
D c=4

Find the value of b that gives the function the given maximum value.

f (x) = -x^2 + bx + 7; maximum value 11
A b=7
B b=7, b=-7
C b=-4 or b=4
D b=4

1 Answer

0 votes

Answer:

D) c = 4

C) b = -4 or b = 4

Explanation:

The minimum/maximum value of a quadratic function is the y-coordinate of the function's vertex.

The x-coordinate of a function's vertex can be found using the following formula:


\textsf{$x$-coordinate of the vertex}=-(b)/(2a)\quad \textsf{(for $ax^2+bx+c$)}.

-----------------------------------------------------------------------------------------------

Given function:


f (x) = 4x^2+ 12x + c

Therefore,


\textsf{$x$-coordinate of the vertex}=-(b)/(2a)=-(12)/(2(4))=-1.5

Substitute the found x-value of the vertex into the function, equate it to -5, then solve for c:


\begin{aligned} f(-1.5)&=-5\\\implies4(-1.5)^2+12(-1.5)+c&=-5\\4(2.25)-18+c&=-5\\9-18+c&=-5\\-9+c&=-5\\c&=4\end{aligned}

Therefore, c = 4.

-----------------------------------------------------------------------------------------------

Given function:


f (x) = -x^2 + bx + 7

Therefore,


\textsf{$x$-coordinate of the vertex}=-(b)/(2(-1))=0.5b

Substitute the found x-value of the vertex into the function, equate it to 11, then solve for b:


\begin{aligned} f(0.5b)&=11\\\implies-(0.5b)^2+b(0.5b)+7&=11\\-0.25b^2+0.5b^2+7&=11\\0.25b^2&=4\\b^2&=16\\√(b^2)&=√(16)\\b&=\pm4\end{aligned}

Therefore, b = -4 or b = 4.

User Zero Point
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories