The standard derivation of the sample (s) is:
![s=\sqrt{\frac{\sum_{i\mathop{=}1}^n(x_i-x)^2}{(n-1)}}](https://img.qammunity.org/2023/formulas/mathematics/college/4kqtdbo5hdi9445mc50ijsmxmfezxf3tu3.png)
Where:
s = standard derivation of sample
n = number of data provided
xi = each of the values of the sample
x = the mean of xi
So, first, let's find the mean.
Given:
n = 6
The mean is:
![\begin{gathered} x=\frac{\sum_{i\mathop{=}1}^nx_i}{n} \\ x=(13+7+34+25+14+27)/(6) \\ x=(120)/(6) \\ x=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lt8msxhqao1q7jeztc6crfbp62cwz7al1k.png)
And the standard derivation:
![\begin{gathered} s=\sqrt{((13-20)^2+(7-20)^2+(34-20)^2+(25-20)^2+(14-20)^2+(27-20)^2)/(6-1)} \\ s=\sqrt{((-7)^2+(-13)^2+(14)^2+(5)^2+(6)^2+(7)^2)/(5)} \\ s=\sqrt{(524)/(5)} \\ s=10.24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5tcpcaqasud86hmx2rx9mov7ab6cvvz4jk.png)
Answer: 10.24.