ANSWER
![\begin{gathered} -(4(x+6))/((x-5)(x+5)) \\ x\\e\pm5,\pm6,0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/16vjtshl9z97mtgmbgbxhrqg6x3ugmi5m6.png)
Step-by-step explanation
We want to simplify the expression:
![-(4x)/(x^2-25)/((x^2-6x))/(x^2-36)](https://img.qammunity.org/2023/formulas/mathematics/college/mb7descu1f4wh6s02ohtl7kwoe6e2kb6in.png)
To do this, first change the sign to a multiplication sign and flip the fraction on the right:
![-(4x)/(x^2-25)\cdot(x^2-36)/((x^2-6x))](https://img.qammunity.org/2023/formulas/mathematics/college/5omke6qozcxqkjdx5zvpbenst0p3103nx4.png)
Now, simplify the expression by applying the difference of two squares and factorization:
![\begin{gathered} -(4x)/((x-5)(x+5))\cdot((x-6)(x+6))/(x(x-6)) \\ \Rightarrow-(4)/((x-5)(x+5))\cdot((x+6))/(1) \\ \Rightarrow-(4(x+6))/((x-5)(x+5)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8iz5anu2dg0ftynm1mbenonr7ne6d00cjr.png)
The expression will be invalid when x is:
![\pm5,\pm6,0](https://img.qammunity.org/2023/formulas/mathematics/college/tylg5p7n3mlvp0t7owf4u02csz8b7e95xw.png)
Therefore, the answer is option C.