Step-by-step explanation
Since we have the expression:
![(7x+42)/(x^2+13x+42)](https://img.qammunity.org/2023/formulas/mathematics/college/5u706joflwotiljn5lre8sphoimo7smeq8.png)
Factoring 7x + 42:
![\mathrm{Rewrite\:}42\mathrm{\:as\:}7\cdot \:6](https://img.qammunity.org/2023/formulas/mathematics/college/k383ny1vwzw6sgdut7n6uyad3196i38ai5.png)
![=7x+7\cdot \:6](https://img.qammunity.org/2023/formulas/mathematics/college/frb2nwco8pbqasa8zhirnuf2h3ekq526jp.png)
Factor out common term 7:
![=7\left(x+6\right)](https://img.qammunity.org/2023/formulas/mathematics/college/vwi14qnrgqzdndako3dlyg9j7ww1lkiyl4.png)
![=(7\left(x+6\right))/(x^2+13x+42)](https://img.qammunity.org/2023/formulas/mathematics/college/f3395b6m2rp5ubef55q3j4cuqkvggnrmam.png)
Factor x^2+13x+42:
Breaking the expression into groups:
![=\left(x^2+6x\right)+\left(7x+42\right)](https://img.qammunity.org/2023/formulas/mathematics/college/20bxydfgml7hsrfkpv5sz7pkyiqtswuzm6.png)
Factor out x from x^2+6x:
![=x\left(x+6\right)](https://img.qammunity.org/2023/formulas/mathematics/college/jmzyn5wky11fuxmze7qht792wn7ovb6btz.png)
Factor out 7 from 7x + 42:
![=x\left(x+6\right)+7\left(x+6\right)](https://img.qammunity.org/2023/formulas/mathematics/college/v6lraf4pc6ty1mibs0eqg1p0g53gxcw4zn.png)
Factor out common term x+6:
![=(7\left(x+6\right))/(\left(x+6\right)\left(x+7\right))](https://img.qammunity.org/2023/formulas/mathematics/college/onz9pj51r7c9cszxcum44sas231x0i33qa.png)
![\mathrm{Cancel\:the\:common\:factor:}\:x+6](https://img.qammunity.org/2023/formulas/mathematics/college/eo3cti4ssaepqryh6h8fcngjaxzckv1gc2.png)
The final expression is as follows:
![=(7)/(x+7)](https://img.qammunity.org/2023/formulas/mathematics/college/p4vk5wgixoxxzqp5gbgzt1gcy0ig98yccq.png)