SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Get the domain of the graph
![\begin{gathered} The\: domain\: of\: a\: function\: is\: the\: set\: of\: input\: or\: argument\: values\: for\: which\: the\: function\: is\: real\: and\: defined \\ \mathrm{The\: function\: has\: no\: undefined\: points\: nor\: domain\: constraints.\: \: Therefore,\: \: the\: domain\: is} \\ -\infty\: <strong>Hence, the compound inequality to represent the domain is:</strong>[tex]-\infty\: <p><strong>STEP 2: Write the domain in interval notation.</strong></p>[tex]\begin{gathered} \text{The compound inequality is written as: }-\infty\: <strong>Hence, the domain in interval notation is written as:</strong>[tex](-\infty,\infty)]()
STEP 3: Write a compound inequality to represent the range
![\begin{gathered} The\text{ range of a function is:} \\ \mathrm{The\: set\: of\: values\: of\: the\: dependent\: variable\: for\: which\: a\: function\: is\: defined} \end{gathered}]()
Hence, the compound inequality of the range is written as: