106k views
3 votes
You are starting a part-time business. You make an initial investment if $9,000. The unit cost of the product is $6.90, and the selling price is $13.15. A) find equations for the total cost C (in dollars) for x units. C(x)= B) find the break even point (in units) C) how many units would yield a profit of $1,500?

User Joanolo
by
8.0k points

1 Answer

2 votes

We set x equal to the no. of units.

a)

The total cost price = Initial investment + Unit cost price * number of units

Replacing the values:

The total cost price = 9,000+ 6.90*x

Therefore:

C(x)=9,000+ 6.90x

c)

Profit = total selling price - total cost price

We need a profit of 1,500

Therefore:

Profit = 1.500

1.500 = 13.15x - C(x)

1.500 = 13.15x - 9,000+ 6.90x

1,500 = 6.25x - 9,000

1,500 + 9,000 = 6.25x

Solve for x

10,500= 6.25x

10.500/6.25 = x

x=1680

Therefore, 1680 units must be produced to get a profit of $1,5000

User LJH
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories