120k views
5 votes
Express √180 as a mixed radical in simplest form

User John Sly
by
4.0k points

1 Answer

1 vote

The expression is given as,


\sqrt[]{180}

Use the prime factorization of 180 as,


\begin{gathered} 180=2\cdot2\cdot3\cdot3\cdot5 \\ 180=2^2\cdot3^2\cdot5 \end{gathered}

Consider the formulae,


\begin{gathered} \sqrt[]{x}=(x)^{(1)/(2)} \\ (xy)^m=x^my^m \\ (x^m)^n=x^(mn) \end{gathered}

Then the given expression can be resolved as follows,


\begin{gathered} \sqrt[]{180} \\ =(180)^{(1)/(2)} \\ =(2^2\cdot3^2\cdot5)^{(1)/(2)} \\ =(2^2)^{(1)/(2)}(3^2)^{(1)/(2)}(5)^{(1)/(2)} \\ =(2^{2\cdot(1)/(2)})^{}(3^{2\cdot(1)/(2)})^{}(5)^{(1)/(2)} \\ =(2^1)^{}(3^1)^{}\cdot\sqrt[]{5} \\ =6\sqrt[]{5} \end{gathered}

Thus, the simplest form of the given expression is,


6\sqrt[]{5}

User Chelder
by
4.1k points