ANSWER:
189.52 kg*m^2
Explanation:
Given:
mr = 8 kg
ms = 36.25 kg
L = 6 m
R = 1.5 m
Moment of inertia of rod about its center of mass:
![I_{\operatorname{cm}}=(1)/(12)\cdot m_r\cdot L^2]()
Parallel axis theorem for the rod gives:
![I_r=m_r\cdot((L)/(2)+(R)/(2))^2](https://img.qammunity.org/2023/formulas/physics/college/9ixwmir8w6zw2i8xnzr6izctne99jxwymo.png)
Paraller axis theorem for the spehere gives:
![I_s=(13)/(20)\cdot m_s\cdot R^2](https://img.qammunity.org/2023/formulas/physics/college/nozzdcy2tsuuiufmbuipbdvnmwajzworvd.png)
Therefore:
![\begin{gathered} I=I_{\operatorname{cm}}+I_r+I_s \\ I=(1)/(12)m_rL^2+m_r((L)/(2)+(R)/(2))^2+(13)/(20)m_sR^2 \end{gathered}]()
Replacing:
![\begin{gathered} I=(1)/(12)\cdot8\cdot6^2+8\cdot((6)/(2)+(1.5)/(2))^2+(13)/(20)\cdot36.25\cdot1.5^2 \\ I=189.52\text{ kg}\cdot m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/zai2lqmmrxz55965agdmqol6e6jag0hd1m.png)
The moment of inertia is 189.52 kg*m^2