Given the ratio:
![\text{ x : y : z }\rightarrow\text{ 11 : 2 : 110}](https://img.qammunity.org/2023/formulas/mathematics/college/5clhlal3tavfze67faw6fjwefwllmrw1k5.png)
To be able to get the value of y at x = 13 and z = 195, let's recall how this ratio transforms into an equation:
At x : y : z
![(x)/(xyz)=(y)/(xyz)=(z)/(xyz)](https://img.qammunity.org/2023/formulas/mathematics/college/eddtweyl2rawhe6nq3v2cumnpty854o346.png)
Let's now plugin the values to be able to find the value of y:
![(2)/((11)(2)(110))=(13)/((13)(y)(195))](https://img.qammunity.org/2023/formulas/mathematics/college/dr3ofzu64moz9aigdw1ymfkmg5uy5hytp1.png)
Let's simplify the equation:
![(2)/((11)(2)(110))=(13)/((13)(y)(195))\text{ }\rightarrow\text{ }(2)/(2420)=(13)/(2535y)](https://img.qammunity.org/2023/formulas/mathematics/college/lop92gmy0xienukrtuskq6oatq0u3z1egc.png)
![2(2,535y)=13(2,420)](https://img.qammunity.org/2023/formulas/mathematics/college/lsii4kp1i6abp57vv2yh7wq9dn6ollxx0n.png)
![5,070y\text{ = 31,460}](https://img.qammunity.org/2023/formulas/mathematics/college/d9vlfom1bflcxowi6ujh97homja8xy5jwj.png)
![(5,070y)/(5070)\text{ = }\frac{\text{31,460}}{5070}](https://img.qammunity.org/2023/formulas/mathematics/college/eis95g9blrd796jdh1ywjromiqo91qmc79.png)
![\text{ y = 6.2}05\text{ }\approx\text{ 6.21}](https://img.qammunity.org/2023/formulas/mathematics/college/5p38aloi0ilyf9vsgl8w6m0jxs109lr2sw.png)
Therefore, y = 6.21